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Time-Domain Macromodel of Planar Microwave
Devices by FDTD and Moment Expansion

Gaetano MarroccdVlember, IEEEand Fernando Bardatlember, IEEE

Abstract—The microwave design of highly complex systems can pulse response of a microwave device can, therefore, play a very
be addressed by segmentation techniques. To this purpose, a subimportant role in the analysis of a composite structure.
system macromodel, such as the impulse response matrix, needs  Among available full-wave techniques, the finite-difference
to be computed in an accurate and efficient way. In this paper, we . d . hod has b ’ b f
present a combined procedure, based on finite-difference time-do- ime-domain (FDTD) method [6] has been proven to be an ef-
main and a moment-expansion deconvolution by which the impulse ficient and accurate tool for the modeling of microwave de-
response matrix is obtained via time-domain processing only. The vices such as planar structures with discontinuities [7], leaky
algorithm has been tested on microwave planar devices with satis- \y.3ye antennas [8] with launchers, picosecond photoconductive
factory accuracy. : : A L o
switches, and interconnects in high-speed digital circuits [9].
_Index Terms—beconvolution, FDTD, microwave circuits, tran-  Moreover, by local modification of the standard Yee algorithm,
sient response. lumped linear and nonlinear elements can be easily included in
a model [10].
I. INTRODUCTION In a previous paper [11], the authors presented the basic idea
and the preliminary results of a new time-domain combined pro-

ODERN design of complex microwave or electronic : .
systems, such as satellite internal circuitry and comput% dure, based on FDTD and numerical deconvolution, for the

motherboards, requires an accurate time-domain electrom rieval of'a planar microwave device impulse response. The
netic analysis of the whole distributed structure. High-spe convolution was performed by a moment expansion (ME) of

analog and digital devices, such as planar filters, couplefd input spectrum, then the impulse response was obtained in
impedance transformers, and integrated antennas have td/§gform of atime series, whose coefficients depend on the input
represented in detail to correctly predict and optimize the pdfaveform. o _
formances of the overall system. However, finite CPU resourcedn this paper, the proposed algorithm is fully described and
limit the application of the conventional full-wave integral andl€convolution coefficients are obtained for two time-dependent
differential methods to the analysis and optimization of sma#citations more frequently used in FDTD computations. Em-
structures. Furthermore, instabilities and accuracy loss #¥easis is devoted to the achievable accuracy and to define a
experienced by such methods for large domains. rule for a suitable choice of the truncation order. In Section II,
Recently, time-domain segmentation techniques have b&¥d shall give both a definition of input and output observables
proposed [1], [2] such that a complex and large structure is ség- multiport devices, and a review of most common excita-
mented into a set of smaller multiport electromagnetic subsyigns for FDTD computations. Section IlI introduces the de-
tems. Each resulting module is individually simulated by an agonvolution algorithm. Section IV presents some considerations
propriate full-wave method, then a suitable definition of equivabout accuracy and numerical complexity. Finally, in Section V,
lent port voltages and currents is introduced, and finally, a coxamples are given for one- (patch antenna) and two-port (a
pact time-domain macromodel is obtained in the form of thganar low-pass filter) devices, showing the practicability of the
impulse response matrix. The whole structure is, therefore, anaethod.
lyzed as a composition of such macromodels, where appropriate
interfaces perform the convolutions of individual responses. Ac- Il. STATEMENT OF THE PROBLEM
cording to a different approach, an equivalent lumped circuit can i ) ) ) )
be derived [3], [4] from each computed impulse response, andconsider a mu_Itlport microwave device. At egch port, input
finally, data obtained via electromagnetic-field analysis can B&d output electric observables can be a physical current on a
integrated into time-domain circuital simulators such as SPICHre, a voltage drop across a couple of terminals, or inward/out-

or TOUCHSTONE [5]. The accurate computation of the im&ard traveling-wave amplitudes.
Letz,,(t) be a band-unlimited (time-dependent) excitation at

themth port andy,, (t) be the output waveform at theh port. If

. . . _the device is causal, passive, and governed by linear differential
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whereh,,,.(t) is the impulse response between thth andnth It is possible to set up the desired time- and frequency-do-
ports.h,,,(t) can be formally defined as main signal features by selecting the parametgrsr. The
Gaussian pulse (3a) has a dc peak of spectral energy density.
As a consequence, an important amount of energy is wasted
Fomn (£) = F 1L Yo (w) (2) on the excitation of spectral components Bfw) outside
X (w) the finite bandwidth of the FDTD algorithm. The derivated

Gaussian pulse (3b) diverts a little energy to low frequen-
where F~! is the inverse Fourier transformX,,(w) = cies and exhibits two oscillations only. The 10% amplitude
Flzm(t)], and Y, (w) = Flyn(t)]. If the FDTD method is bandwidth [6] is[0, vIn100(1/7)] for the Gaussian pulse
used, the discrete Fourier transformsagf(¢) and y,.(t) are and[0.06(1/7), 2.8(1/T)] for the derivated Gaussian pulse.
performed on data sampled at tipat, whereAt is the time  Therefore, the response, provided by FDTD for the above ex-
step. citations, is band limited. Its upper frequency will be the lower

According to (2), the impulse response can be obtained bye between that of the input signal anf2I®. Generally, the
frequency-domain manipulation and Fourier processing. Othéiput signal upper frequency is lower thafi2T™ in order not
wise, it can be computed directly in the time domain by solving excite frequency components outside the FDTD band. As a
the integral equation (1) after time-domain discretization. In etonsequence, any distributed microwave device, although it is
ther case, the accuracy of the impulse-response computationgigherally band unlimited, will be modeled as band limited.
pends on the deconvolution scheme (it will be examined in Sec-
tion 11l) as well as on: 1) numerical noise of FDTD results; 2) IIl. DECONVOLUTION BY ME
FDTD finite bandwidth; and 3) input signal waveform. These

three points are discussed in detail as follows. Stable algorithms [15], [16] are available to solve general de-

convolution problems with both discrete and continuous data

1) Numerical noise is mainly caused by numerical dISpe.\5\7ithout direct use of (2). However, for input waveforms, as in

sion [12], boundary staircasing [13], numerical apprOXI('3), the impulse response can be accurately approximated by a

majuon of differential operators, gnd imperfect grid tem_"éimple formula involving pure time-domain operations. For this
nation [14]. An error of 1%—5% is normally accepted i

the field tation by EDTD simulati rburpose, the ME method can be applied in the form introduced
5 S.e € hco[r:nDp_:_JS\ lon hyd kS|m.uha ons. .. by Papoulis [17] for image restoration and here extended to the
) Since the met 100 WOTKS with an approximatiog ) i application. Papoulis’ algorithm applies when(¢)

of the electromagnetic boundary value problem, t

tati P | tsid ; as short duration, as compared with(¢). This generally ap-
computation o "(”)FDOTST?S ?%CTlgaCy OUtSIde a TT€)ie5 when Gaussian or derivated Gaussian waveforms are used.
quency band3,,, = [wIPIP WIDIP] It is known that

min . . .___.__The following expansion in powers 6f jw) is considered:
the upper frequency depends on spatial discretization gexp P 0Fjw)

since, for a rectangular grid with largest cell sixethe 1 N .

shortest wavelength, which can be accurately resolved, o & —f (—jw)* (4)
is such that\,im > nA with n = 8 — 10 and, therefore, Km(w)eicto = 1!

wEDID - — 97c/(nA), wherec is the speed of light

in the medium with the highest permittivity. A IOWerwhere the shift parameteés > 0 must be chosen, as explained

bound of the FDTD bandwidth exists since, to accurater?ter' in order to put .th.e center of glravity of the input sigpal at
account for slow field oscillations, the computation — 0;_ {ac} are coefficients depending cmjt)l. The expansion
should be carried on for a large number of iteration) (4) is truncated at thé/th term, whereV will be referred to

but the numerical noise limits the overall time window?s the ME order._ . . .
Though generally not quantifiableEPTP is usually one Once the coefficient§a, } have been found for a given input,

or two orders of magnitude IOWG?li{F'IaFFDTD. EDTD a time-domain expression fér,,,,(t — to) is obtained from (2)

1ax

off-band noise can be reduced by bandpass filtering ap

the computation outcomes. N o
3) The input waveform for the FDTD computation must be R (t — to) = g—f]—“—l [(—jw)éYn(w)] (5)
properly chosen in order to extract the maximum infor- =0

mation in the band of the numerical algorithm by consid-

ering that the noise ol (w) is amplified by 1/ X («) The deconvolution coefficient§a,} can be obtained ac-

depending on frequency, unless (¢) is a Dirac pulse. cording to a moment-matching procedure by performing a

H Jwt
Generally, smooth and narrow pulses [6] such as the Gaussl@¥!°" €xpansion of\ (w)e**, whose moment§ } can be

zg(t) or derivated Gaussiampg(t) pulses are appropriateComputecj as
FDTD excitations

oo
= / (t — to)*w,, (t) dt

— o0

2 (t) = e~ (=)7/2T%) (3a) N

t ;Te_((t—‘r)z/QTz). (3b) = Z <I;> (_to)kip(j)pXr(rlz)) (0) (6)

.IDG(t)I— =0
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TABLE | TABLE I

DECONVOLUTION COEFFICIENTS FORINPUT SIGNAL (t) DECONVOLUTION MOMENTS FORGAUSSIAN AND DERIVATED GAUSSIAN

WAVEFORMS
a non-zero :irerage z(t) | zero aviage z(t) Gaussian pulse derivated Gaussian pulse
ao 160 lE]l % ﬁ m712€1/2

: B T az —a0T2 —(IOT2

ap — 3, ag 3aT? 6aoT?
as —Z—%’
a iy S 20 . . o . .

: Poto 34t For time-domain discretization as= pAt, with At being the
time step, the central difference computation of the derivatives
in (8) yields

The coefficients{a,} are obtained, in terms of momers; } ;
by separately zeroing the coefficient of each powep af the nn (P)
following identity: _ 04 [ 9 _9 }
SAAL Yn(p+2+po)+yn(p—2+po)
N N as aq |: :|
a . : R — n 1 w(p—1
lz g_f(_ﬂ”)[] . [Z %(_jw)k] _1=—o. @ + <2At2 6At4> Yn(p+1+4po)+yn(p—1+po)
=0 k=0 '
a9 a4
) o + ao—m‘i‘m Yn(P+po) 9)
In Table I, the dependence@f on;:; is made explicit fo¥ =
0, ..., 4andinput signal with nonzero or zero average. In the%\ .
o . . : r the Gaussian pulse and
cases, the shift parameter is definedas j X (V) (0)/X(0) and P
to = jX@(0)/X1(0), respectively. P (D)
Finally, it can be easily demonstrated that the impulse re- oo
sponse may be written as _ aoAtZ yn(h+p0)+ a4 .
= 48A¢
t+to N as dkfl a a
a dr+ Y. S oyt +t [p(p+24p0) ~y(p—24p0) | + | oy — 5
l 0/0 Z dtk—ll (t + to) Un(P+24p0) —y(p—24p0) | +| A7~ 3aA
hrnn(t) ~
N dF
ao+ 3. % W] Yn(t + to) : [yn(p—i-l—i-po)—yn(p—l-i-po)} (10)
k=2 v

(8) for the derivated Gaussian pulse, whegse= int(to/At).

IV. ME V ERSUSFOURIER DECONVOLUTION
when z,,,(t) has a zero (upper line) or nonzero (lower line)

mean, respectively. . ; ) o .
P Y h/IE, i.e., numerical accuracy and computational efficiency, will

For application to a d|§crete putput signal, as compu_ted w be compared with those of the standard Fourier deconvo-
the FDTD method, the differential operators are apprommatﬂion

by central differences. It is interesting to note that, according to
(8), the value ot (f), at timet = ¢, depends on the knowl- A, Accuracy
edge ofy,, (f + to) only in a neighborhood of, whereas in the Being based on a Taylor expansiongat= 0, of the input
direct/inverse Fourier anglysis, valueggft) on the entire axis signal spectrum, the ME deconvolutions (8) béhave as low-pass
are u;ed. Therefore, thellmpulse response can be extracted fﬁﬂ@s whose bandwidths depend on those of both the input and
a portion of the output signal. response signals, and on the truncation order of the series ex-
The expansions in (8) are rapidly convergent [17]. Howsansion. Therefore, it is expected that a large error is inherently
ever, the numerical differentiation of discrete data is more agdsociated with the deconvolution algorithm at the early tran-
more inaccurate with the increase of the differentiation ordejient while decreasing to the late transient.
Therefore, only a few terms can be retained for reasonablerhe accuracy of ME deconvolutions has been investigated in
accuracy. A second-order truncation (hereafter referred to tge past on the basis of numerical examples [18]. Here, we will
ME?) was suggested in [17]. However, a fourth order trurexamine time and frequency waveforms for a simple lumped cir-
cation (ME®) has been successfully used in this paper feuit in order to discuss the impulse response recovery without
Gaussian and derivated Gaussian excitations. Accordingly, the errors and artifacts of numerical solutions such as those pro-
first nonzero moments are reported in Table Il. Due to signaided by the FDTD method and reviewed in Section II.
symmetries with respect to their centers of gravity, only even The formulas in Section Il can be usefully applied to the
coefficients are present. impulse response computation if the expansion in (8) converges

Some features of the proposed deconvolution based on the
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Fig. 1. (a)M-bipole lumped network. (b) SingRRLC bipole. ozr
0.1
TABLE 11l
LUMPED-NETWORK PARAMETERS °
T R(’)"ig) L"é(gg[) C”g(g{) Fig.2. Normalized spectra of the network impulse response (thick line) and of
5 0'30 0.56 0'55 the input voltages (thin lines) for different test-signal bandwidgh= rw ;.
3 0.50 0.56 0.20 70
4 0.30 0.24 0.24

60

rapidly. This is the case if the response takes significant values —~
[17] only in a finite range of frequencies < w,,. Therefore, Rs0
anRLCnetwork consisting of the parallel connection of a finite L.
numberA{ of bipoles is considered (Fig. 1) as a suitable test Qe
case. Its impulse responié&) is defined as the inverse Fourier
transform of the input admittance. It is easy to show that, under
the constraint?,,, > +/L,,/(4C,,), the impulse response of
the circuit in Fig. 1 is

M
h(t) = Z e rmt (Am cos(wmt) + By Sin(wmt)) (11)

m=1

where Arn = 1/Lrna Brn = (2wrnanLrnCrn)7lu Ym =
(2Rmcm_)_l’ a”‘?'wm = \/(lecm)il - (2Rmcm)72_' Fig. 3. rms error for ME and Fourier deconvolutions and the circuit in Fig. 1

The stimulus is a Gaussian pulse voltage), as in (3a). as a function of Gaussian-pulse bandwidth = rw ;.
Its upper (10% amplitude) frequencye = Iln+/100/7 is
tuned to the 10% amplitude upper frequency of the impulsown in Fig. 2. The response is a vector/af = 213 time
responsewy; according towg = rwy by selecting the samples, with time stept = 0.6 ns. Note that the response
parameter > 0. The parameter of the Gaussian pulse issignal is fully damped at timeV, At (overall ime window).
such thatv(0) = 107"v(7). For each input voltage and the Djagrams of thems error are shown in Fig. 3 versus the input
corresponding network respongét), which is computed by pandwidth. The error always decreases for increasjnghile
convolution, the time response is retrieved by the ME deconvighecomes less than 10% fer> 1 — 1.5. However, better re-
lution (A)Y) with second- and fourth-order truncation and byits are obtained by fourth-ordsfE* deconvolution, than by

Fourier deconvolutioriz; ™). The notation,Y (1) memorizes fast Fourier transform (FFT) deconvolution (for errors less than

the Gaussian input bandwidthu{y;) and the truncation order 109). In particular, in the case of; = 1.5wyy, §(h, hFET) =

(V= 2 or 4). The relative root-mean-squaraifs) error is 7.5%, §(h, h?.) = 7.7%, andé(h, hi ;) = 2.9%. The re-

<))
%3
E
i
20

10

defined as trieved responses are shown together with the true impulse re-
N Hh(t) — hf}"(t)HQ sponsé.(t) in Fig. 4. No visible difference can be appreciated
§(h, bY) = oL 100 (12) petweerh? . and the exact solution. Finally, the amplitude of the
2

instantaneous differendé(t) — h? 5(¢)| versus time is shown
where||h(t)]|2 = E;f;o [h(pAt)]2. in Fig. 5. As expected, the instantaneous error is high during the
In the following numerical example, the circuit parametersarly transient and then rapidly decreases.
are such that the resonance frequenaigs of the RLC cir- The above example highlights the fact that, to retrieve the im-
cuit are equally spaced on the frequency axis and the dampmgse response with an error lower than a few percent, the band-
factors~,, grow linearly withm. The circuit parameters, for width of the Gaussian input has to be so large as to include most
M = 4, are reported in Table Ill. For this choice, the 10% annf the response spectrum. A “rule of thumb” for the choice of a
plitude upper angular frequencyds,; = 28 - 2r GHz. set of parameters for the impulse response retrieval via FDTD
The spectra of the input voltage, whenakes values from and ME deconvolution may be the following. Let,; be the
0.4 to 2, superimposed on the impulse response spectrum, laghest frequency to be computed. First, the FDTD mesh size is
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Fig.5. Instantaneous err@di(t)—h} .(¢)| formoment-method deconvolution

Fig. 4. Retrieved impulskAt (At = 0.6 ns) response farg = 1.5 was. and the circuit in Fig, 1.

7

chosen so thatEPTP > ¢4, The Gaussian-pulse parameters 10

max

are such that its 10% amplitude upper frequengythen lies in _— ,’f,,’;@

the rangdrwys, wEDTP] with » =~ 1.5. 10l

max

B. Numerical Complexity 10°%

The ME method is computationally more efficient than the
deconvolution procedure, which involves the Fourier transform.
Since additions are usually much faster than multiplications, the
numerical complexity of the two methods will be compared in ~ 10°}
terms of multiplications. For the Fourier-based deconvolutions
(2), the FDTD response is first transformed to the frequency do- 402,
main, then the transform is divided by the spectrum of the input
signal, and finally, an inverse Fourier transform is performed.
If the responsey,(t) is a vector of Ny time samples, an FFT 10
requires(1/2) N, log, N, multiplications [19]. Therefore, the
over_all Fourier-based deconvolution involves a numerical Corlgl_g. 6. Numerical complexity of the direct/inverse Fourier transforms and ME
plexity Oppr(Ns) = N,log, N, + N,. method with second- and fourth-order truncation versus the number of time

The ME deconvolution requires the computation of timeamples.
derivatives, which are numerically evaluated as central dif-
ferences. Therefore, it is easy to prove that the numerical V. APPLICATION TO MICROWAVE DEVICES
complexity for anNV-order truncated formula is

_
@2 4
< 10
@)

L L
1 2 3

10 10 10* 10
number of time samples (Ns)

A numerical analysis has been carried out for two microwave
devices: a multilayer patch antenna (one-port device) and a mi-
Oypy (Ns) = N - N, (13)  crostrip low-pass filter (two-port device). The computer pro-
gram BEST [20] was used for FDTD computation.
Oppy increases linearly with both the truncation ord€r
and the response lengfi,. When a Gaussian or a derivated?. Patch Antenna

Gaussian pulse is used as input signal, the complexities of they coaxially fed stacked patch antenna (Fig. 7) was modeled by
second- and fourth-order deconvolutions@gg2 (V) = 2N, means of a nonuniform grid with cell size 0.9 Az, Ay <
and Oygs(N,) = 3N,, respectively. A comparison between.8 mm and 0.3 mnk Az < 1 mm and time step\t = 0.78
complexities is presented in Fig. 6. It can be observed that the. The transition between coaxial cable and ground plane was
number of multiplications required by the ME deconvolution isnodeled as a real voltage generator [21] with a series lumped re-
always lower. Therefore, a computational saving of about oB8&torR, = 50 £, which is equal to the cable resistance. The
order of magnitude can be achieved whénexceeds 1000, as grid was terminated by six-cell perfectly matched layer (PML)
is the case in FDTD simulations. absorbing boundary conditions. The time wavefeg{t) of the

For the numerical example in Section 1V, the number of mulroltage generator was a derivated Gaussian pulse with bandwidth
tiplications for second-order ME, fourth-order ME and FFT dg1.7 GHz, 10 GHz), which is large enough to include the first an-
convolutions were 16.384, 24.576, and 114.688, respectiveljtenna resonances for standard operations (2.4 GHz to 3.4 GHz).
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time (ps)
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Fig. 7. Current impulse responge\t (At = 0.78 ps) of a stacked patch frequency ( GHZ)

antennadq = 41 mm,b = 33.2 mm,d, = 209 mm,d, = 5 mm,l; =
1.57mm,h, = 5.4mm,s; = 2.2,£, = 1) atthe coax/ground plane transition. Fig. 9. Fourier transforms of the currents of Fig. 8.

=3
= T
_%.

<
.

e

-15

L . L L . L R L ! s L ! ! L s L
[4] 500 1000 1500 2000 2500 3000 3500 0 100 200 300 400 500 600 700 800 900 1000

time (ps) time (ps)

Fig. 8. FDTD-computed current (continuous line) at the coax/ground-plaféy. 10. Planar low-pass filter (size in millimeters) and impulse responses

transition for the antenna in Fig. 7 and the convolution (dashed line) of the tést At (dashed line) antl,; At (continuous line) versus time by the FDTD/ME
signal with the impulse response deconvolved by the present method. method A\t = 0.2 ps).

This structure can be considered as a one-portdevice. The outpigt 9. A good agreement can be appreciated up to 6 GHz,
observable is the curreift) at the source point. The curreiit) while the low-pass effect of the proposed ME-deconvolution is
is evaluated as magnetic field line integral around the excitatiogsponsible for the worsening at higher frequencies.

point. The impulse responéét) is defined as the inverse Fourier

transform of the input admittance B. Microstrip Filter
A planar low-pass filter [22] on a 0.794-mm substrate
h(t) = F~! I(w) (14) (Fig. 10) with 2.2 permittivity, was meshed on a nonuniform
Vo(w) grid with cell sizes 0.3 mnx Az, Ay < 1 mm and 0.1 mm

< Az < 0.5 mm and time stepA¢ = 0.23 ps. The com-

whereVp(w) = Fluo(t)] andi(w) = Fi(2)]. putation domain was truncated by six-cell PML absorbing

To lower the high-frequency numerical noise on the FDTBoundary conditions. The source was modeled as a Huygens-in-
solution,i(¢) was low-pass filtered (15-GHz cutoff frequency)ector template [6] exciting a/*-directed quasi-TEM mode
before the numerical computation of the second and foufi@aussian-pulse bandwidth (0, 27 GHz)]. The structure is a
derivatives of:(¢) in (8). The impulse response, computedwo-port symmetric device. The input waveform is the voltage
by ME* deconvolution, is shown in Fig. 7. The convolutioruy(t) computed as the line integral of the incident electric field
vo * h(t) = i(t) was computed and compared with) (Fig. 8) at portP; from the ground plane to the microstrip. The output
for accuracy evaluation. Full agreement can be observed amighals are the amplitudes 1(¢) andw, »(¢) of the outgoing
the rms erroré(i, i) is less than 7%. For completeness, thmodes from ports®; and P», respectively, defined as line
Fourier transforms of the time signals of Fig. 8 are shown integrals in the same way. Therefore, the impulse responses are
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FDTD-computed outgoing voltages (continuous lines) at: (a) p
P, and (b)P- and the corresponding convolution (dashed lines) of the in
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of the FDTD-ME computed impulse responses and as the ra-
tios between the spectra of the reflected voltagés. ;]i=1, 2

and the input voltageF[v,]. The low-pass filter performance
can be seen in the shafp; rolloff beginning approximately at

5 GHz, as predicted in [22]. An excellent agreement for IsGth
andSs; parameters can be appreciated at frequencies within the
filter bandwidth.

VI. CONCLUSION

In order to achieve a time-domain macromodel of a mi-
crowave device, the impulse response computation by FDTD
data processing has been considered in this paper. With ref-
erence to Gaussian and derivated-Gaussian input waveforms,
a simple time-domain deconvolution algorithm has been
proposed. The deconvolution is based on a truncated ME of the
input waveform spectrum. The accuracy of the method has been
shown to depend on both the truncation order and the input
bandwidth. A numerical analysis has been carried out to show
Yfhat accurate deconvolutions (preserving the accuracy of the
¥DTD response) can be obtained by means of a fourth-order
ME if the input upper frequency is from 1 to 1.5 the response
upper frequency. The proposed method was shown to be more
accurate and of an order of magnitude computationally more

0
5
-10
-15
b (1]
-20 H
dB W
e f 1 [2]
-30 l H .
(3]
35 E
40+
— 1Syl
a5 — 19l ] (4]
% 2 ; ; s 10 12 14 18 18 20 5
frequency (GHz) [5]
Fig. 12. Frequency-domain scattering paramefgisand.S;; computed as

ratio of transforms (continuous lines) and as Fourier transform (dashed lines) of 6]
the impulse responses retrieved by the FDTD-ME method.

[7]
the reflection coefficienté; () = ha2(¢) and the transmission
coefficientshio(t) = ho1(t) defined as 8]

vr,1(t) = h11 * vo(t) (15a)
Vp2(t) = hay % vo(2). (1sb) ]

A time-domain device macromodel can, therefore, be
obtained from data computed via a single FDTD run. [10]

Low-pass filtering (20-GHz cutoff frequency) is applied to
the output signals before evaluation of derivatives. The com-
puted impulse responses BYE* deconvolution are shown in [11]
Fig. 10. The convolutions,. 1(t) andz,. »(¢) of the impulse re-
sponses and the input voltage are plotted in Fig. 11 for compaHZ]
ison withv,. 1(t) andv,. 2(t), respectively. The diagrams are in-
distinguishable almost everywhere and both the rms errors wefés]
less than 4%. It is useful to show the scattering parameters in
the frequency domain ( Fig. 12) as the direct Fourier transform

efficient than the FFT-based deconvolution.
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