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Time-Domain Macromodel of Planar Microwave
Devices by FDTD and Moment Expansion
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Abstract—The microwave design of highly complex systems can
be addressed by segmentation techniques. To this purpose, a sub-
system macromodel, such as the impulse response matrix, needs
to be computed in an accurate and efficient way. In this paper, we
present a combined procedure, based on finite-difference time-do-
main and a moment-expansion deconvolution by which the impulse
response matrix is obtained via time-domain processing only. The
algorithm has been tested on microwave planar devices with satis-
factory accuracy.

Index Terms—Deconvolution, FDTD, microwave circuits, tran-
sient response.

I. INTRODUCTION

M ODERN design of complex microwave or electronic
systems, such as satellite internal circuitry and computer

motherboards, requires an accurate time-domain electromag-
netic analysis of the whole distributed structure. High-speed
analog and digital devices, such as planar filters, couplers,
impedance transformers, and integrated antennas have to be
represented in detail to correctly predict and optimize the per-
formances of the overall system. However, finite CPU resources
limit the application of the conventional full-wave integral and
differential methods to the analysis and optimization of small
structures. Furthermore, instabilities and accuracy loss are
experienced by such methods for large domains.

Recently, time-domain segmentation techniques have been
proposed [1], [2] such that a complex and large structure is seg-
mented into a set of smaller multiport electromagnetic subsys-
tems. Each resulting module is individually simulated by an ap-
propriate full-wave method, then a suitable definition of equiva-
lent port voltages and currents is introduced, and finally, a com-
pact time-domain macromodel is obtained in the form of the
impulse response matrix. The whole structure is, therefore, ana-
lyzed as a composition of such macromodels, where appropriate
interfaces perform the convolutions of individual responses. Ac-
cording to a different approach, an equivalent lumped circuit can
be derived [3], [4] from each computed impulse response, and
finally, data obtained via electromagnetic-field analysis can be
integrated into time-domain circuital simulators such as SPICE
or TOUCHSTONE [5]. The accurate computation of the im-
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pulse response of a microwave device can, therefore, play a very
important role in the analysis of a composite structure.

Among available full-wave techniques, the finite-difference
time-domain (FDTD) method [6] has been proven to be an ef-
ficient and accurate tool for the modeling of microwave de-
vices such as planar structures with discontinuities [7], leaky
wave antennas [8] with launchers, picosecond photoconductive
switches, and interconnects in high-speed digital circuits [9].
Moreover, by local modification of the standard Yee algorithm,
lumped linear and nonlinear elements can be easily included in
a model [10].

In a previous paper [11], the authors presented the basic idea
and the preliminary results of a new time-domain combined pro-
cedure, based on FDTD and numerical deconvolution, for the
retrieval of a planar microwave device impulse response. The
deconvolution was performed by a moment expansion (ME) of
the input spectrum, then the impulse response was obtained in
the form of a time series, whose coefficients depend on the input
waveform.

In this paper, the proposed algorithm is fully described and
deconvolution coefficients are obtained for two time-dependent
excitations more frequently used in FDTD computations. Em-
phasis is devoted to the achievable accuracy and to define a
rule for a suitable choice of the truncation order. In Section II,
we shall give both a definition of input and output observables
for multiport devices, and a review of most common excita-
tions for FDTD computations. Section III introduces the de-
convolution algorithm. Section IV presents some considerations
about accuracy and numerical complexity. Finally, in Section V,
examples are given for one- (patch antenna) and two-port (a
planar low-pass filter) devices, showing the practicability of the
method.

II. STATEMENT OF THE PROBLEM

Consider a multiport microwave device. At each port, input
and output electric observables can be a physical current on a
wire, a voltage drop across a couple of terminals, or inward/out-
ward traveling-wave amplitudes.

Let be a band-unlimited (time-dependent) excitation at
the th port and be the output waveform at theth port. If
the device is causal, passive, and governed by linear differential
equations with constant coefficients, the following convolution
integral holds:

(1)
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where is the impulse response between theth and th
ports. can be formally defined as

(2)

where is the inverse Fourier transform,
, and . If the FDTD method is

used, the discrete Fourier transforms of and are
performed on data sampled at time , where is the time
step.

According to (2), the impulse response can be obtained by
frequency-domain manipulation and Fourier processing. Other-
wise, it can be computed directly in the time domain by solving
the integral equation (1) after time-domain discretization. In ei-
ther case, the accuracy of the impulse-response computation de-
pends on the deconvolution scheme (it will be examined in Sec-
tion III) as well as on: 1) numerical noise of FDTD results; 2)
FDTD finite bandwidth; and 3) input signal waveform. These
three points are discussed in detail as follows.

1) Numerical noise is mainly caused by numerical disper-
sion [12], boundary staircasing [13], numerical approxi-
mation of differential operators, and imperfect grid termi-
nation [14]. An error of 1%–5% is normally accepted in
the field computation by FDTD simulations.

2) Since the FDTD method works with an approximation
of the electromagnetic boundary value problem, the
computation of loses accuracy outside a fre-
quency band . It is known that
the upper frequency depends on spatial discretization
since, for a rectangular grid with largest cell size, the
shortest wavelength, which can be accurately resolved,
is such that with and, therefore,

, where is the speed of light
in the medium with the highest permittivity. A lower
bound of the FDTD bandwidth exists since, to accurately
account for slow field oscillations, the computation
should be carried on for a large number of iterations,
but the numerical noise limits the overall time window.
Though generally not quantifiable, is usually one
or two orders of magnitude lower than . FDTD
off-band noise can be reduced by bandpass filtering of
the computation outcomes.

3) The input waveform for the FDTD computation must be
properly chosen in order to extract the maximum infor-
mation in the band of the numerical algorithm by consid-
ering that the noise on is amplified by
depending on frequency, unless is a Dirac pulse.

Generally, smooth and narrow pulses [6] such as the Gaussian
or derivated Gaussian pulses are appropriate

FDTD excitations

(3a)

(3b)

It is possible to set up the desired time- and frequency-do-
main signal features by selecting the parameters, . The
Gaussian pulse (3a) has a dc peak of spectral energy density.
As a consequence, an important amount of energy is wasted
on the excitation of spectral components of outside
the finite bandwidth of the FDTD algorithm. The derivated
Gaussian pulse (3b) diverts a little energy to low frequen-
cies and exhibits two oscillations only. The 10% amplitude
bandwidth [6] is for the Gaussian pulse
and for the derivated Gaussian pulse.
Therefore, the response, provided by FDTD for the above ex-
citations, is band limited. Its upper frequency will be the lower
one between that of the input signal and . Generally, the
input signal upper frequency is lower than in order not
to excite frequency components outside the FDTD band. As a
consequence, any distributed microwave device, although it is
generally band unlimited, will be modeled as band limited.

III. D ECONVOLUTION BY ME

Stable algorithms [15], [16] are available to solve general de-
convolution problems with both discrete and continuous data
without direct use of (2). However, for input waveforms, as in
(3), the impulse response can be accurately approximated by a
simple formula involving pure time-domain operations. For this
purpose, the ME method can be applied in the form introduced
by Papoulis [17] for image restoration and here extended to the
specific application. Papoulis’ algorithm applies when
has short duration, as compared with . This generally ap-
plies when Gaussian or derivated Gaussian waveforms are used.

The following expansion in powers of is considered:

(4)

where the shift parameter must be chosen, as explained
later, in order to put the center of gravity of the input signal at

; are coefficients depending on . The expansion
in (4) is truncated at the th term, where will be referred to
as the ME order.

Once the coefficients have been found for a given input,
a time-domain expression for is obtained from (2)
as

(5)

The deconvolution coefficients can be obtained ac-
cording to a moment-matching procedure by performing a
Taylor expansion of , whose moments can be
computed as

(6)
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TABLE I
DECONVOLUTION COEFFICIENTS FORINPUT SIGNAL x(t)

The coefficients are obtained, in terms of moments
by separately zeroing the coefficient of each power ofin the
following identity:

(7)

In Table I, the dependence ofon is made explicit for
and input signal with nonzero or zero average. In these

cases, the shift parameter is defined as and
respectively.

Finally, it can be easily demonstrated that the impulse re-
sponse may be written as

(8)

when has a zero (upper line) or nonzero (lower line)
mean, respectively.

For application to a discrete output signal, as computed by
the FDTD method, the differential operators are approximated
by central differences. It is interesting to note that, according to
(8), the value of , at time , depends on the knowl-
edge of only in a neighborhood of, whereas in the
direct/inverse Fourier analysis, values of on the entire axis
are used. Therefore, the impulse response can be extracted from
a portion of the output signal.

The expansions in (8) are rapidly convergent [17]. How-
ever, the numerical differentiation of discrete data is more and
more inaccurate with the increase of the differentiation order.
Therefore, only a few terms can be retained for reasonable
accuracy. A second-order truncation (hereafter referred to as

) was suggested in [17]. However, a fourth order trun-
cation ( ) has been successfully used in this paper for
Gaussian and derivated Gaussian excitations. Accordingly, the
first nonzero moments are reported in Table II. Due to signal
symmetries with respect to their centers of gravity, only even
coefficients are present.

TABLE II
DECONVOLUTION MOMENTS FORGAUSSIAN AND DERIVATED GAUSSIAN

WAVEFORMS

For time-domain discretization as , with being the
time step, the central difference computation of the derivatives
in (8) yields

(9)

for the Gaussian pulse and

(10)

for the derivated Gaussian pulse, where .

IV. ME V ERSUSFOURIER DECONVOLUTION

Some features of the proposed deconvolution based on the
ME, i.e., numerical accuracy and computational efficiency, will
now be compared with those of the standard Fourier deconvo-
lution.

A. Accuracy

Being based on a Taylor expansion, at , of the input
signal spectrum, the ME deconvolutions (8) behave as low-pass
filters whose bandwidths depend on those of both the input and
response signals, and on the truncation order of the series ex-
pansion. Therefore, it is expected that a large error is inherently
associated with the deconvolution algorithm at the early tran-
sient while decreasing to the late transient.

The accuracy of ME deconvolutions has been investigated in
the past on the basis of numerical examples [18]. Here, we will
examine time and frequency waveforms for a simple lumped cir-
cuit in order to discuss the impulse response recovery without
the errors and artifacts of numerical solutions such as those pro-
vided by the FDTD method and reviewed in Section II.

The formulas in Section III can be usefully applied to the
impulse response computation if the expansion in (8) converges
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(a) (b)

Fig. 1. (a)M -bipole lumped network. (b) SingleRLCbipole.

TABLE III
LUMPED-NETWORK PARAMETERS

rapidly. This is the case if the response takes significant values
[17] only in a finite range of frequencies . Therefore,
anRLCnetwork consisting of the parallel connection of a finite
number of bipoles is considered (Fig. 1) as a suitable test
case. Its impulse response is defined as the inverse Fourier
transform of the input admittance. It is easy to show that, under
the constraint , the impulse response of
the circuit in Fig. 1 is

(11)

where , ,
, and .

The stimulus is a Gaussian pulse voltage , as in (3a).
Its upper (10% amplitude) frequency is
tuned to the 10% amplitude upper frequency of the impulse
response according to by selecting the
parameter . The parameter of the Gaussian pulse is
such that . For each input voltage and the
corresponding network response , which is computed by
convolution, the time response is retrieved by the ME deconvo-
lution with second- and fourth-order truncation and by
Fourier deconvolution . The notation memorizes
the Gaussian input bandwidth ( ) and the truncation order
( or ). The relative root-mean-square ( ) error is
defined as

(12)

where .
In the following numerical example, the circuit parameters

are such that the resonance frequencies of the RLC cir-
cuit are equally spaced on the frequency axis and the damping
factors grow linearly with . The circuit parameters, for

, are reported in Table III. For this choice, the 10% am-
plitude upper angular frequency is GHz.

The spectra of the input voltage, whentakes values from
0.4 to 2, superimposed on the impulse response spectrum, are

Fig. 2. Normalized spectra of the network impulse response (thick line) and of
the input voltages (thin lines) for different test-signal bandwidth! = r! .

Fig. 3. rms error for ME and Fourier deconvolutions and the circuit in Fig. 1
as a function of Gaussian-pulse bandwidth! = r! .

shown in Fig. 2. The response is a vector of time
samples, with time step ns. Note that the response
signal is fully damped at time (overall time window).

Diagrams of the error are shown in Fig. 3 versus the input
bandwidth. The error always decreases for increasing, while
it becomes less than 10% for . However, better re-
sults are obtained by fourth-order deconvolution, than by
fast Fourier transform (FFT) deconvolution (for errors less than
10%). In particular, in the case of ,

, , and . The re-
trieved responses are shown together with the true impulse re-
sponse in Fig. 4. No visible difference can be appreciated
between and the exact solution. Finally, the amplitude of the
instantaneous difference versus time is shown
in Fig. 5. As expected, the instantaneous error is high during the
early transient and then rapidly decreases.

The above example highlights the fact that, to retrieve the im-
pulse response with an error lower than a few percent, the band-
width of the Gaussian input has to be so large as to include most
of the response spectrum. A “rule of thumb” for the choice of a
set of parameters for the impulse response retrieval via FDTD
and ME deconvolution may be the following. Let be the
highest frequency to be computed. First, the FDTD mesh size is
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Fig. 4. Retrieved impulseh�t (�t = 0:6 ns) response for! = 1:5 ! .

chosen so that . The Gaussian-pulse parameters
are such that its 10% amplitude upper frequencythen lies in
the range with .

B. Numerical Complexity

The ME method is computationally more efficient than the
deconvolution procedure, which involves the Fourier transform.
Since additions are usually much faster than multiplications, the
numerical complexity of the two methods will be compared in
terms of multiplications. For the Fourier-based deconvolutions
(2), the FDTD response is first transformed to the frequency do-
main, then the transform is divided by the spectrum of the input
signal, and finally, an inverse Fourier transform is performed.
If the response is a vector of time samples, an FFT
requires multiplications [19]. Therefore, the
overall Fourier-based deconvolution involves a numerical com-
plexity .

The ME deconvolution requires the computation of time
derivatives, which are numerically evaluated as central dif-
ferences. Therefore, it is easy to prove that the numerical
complexity for an -order truncated formula is

(13)

increases linearly with both the truncation order
and the response length . When a Gaussian or a derivated
Gaussian pulse is used as input signal, the complexities of the
second- and fourth-order deconvolutions are
and , respectively. A comparison between
complexities is presented in Fig. 6. It can be observed that the
number of multiplications required by the ME deconvolution is
always lower. Therefore, a computational saving of about one
order of magnitude can be achieved whenexceeds 1000, as
is the case in FDTD simulations.

For the numerical example in Section IV, the number of mul-
tiplications for second-order ME, fourth-order ME and FFT de-
convolutions were 16.384, 24.576, and 114.688, respectively.

Fig. 5. Instantaneous errorjh(t)�h (t)j for moment-method deconvolution
and the circuit in Fig. 1.

Fig. 6. Numerical complexity of the direct/inverse Fourier transforms and ME
method with second- and fourth-order truncation versus the number of time
samples.

V. APPLICATION TO MICROWAVE DEVICES

A numerical analysis has been carried out for two microwave
devices: a multilayer patch antenna (one-port device) and a mi-
crostrip low-pass filter (two-port device). The computer pro-
gram BEST [20] was used for FDTD computation.

A. Patch Antenna

A coaxially fed stacked patch antenna (Fig. 7) was modeled by
means of a nonuniform grid with cell size 0.9 mm

mm and 0.3 mm mm and time step
ps. The transition between coaxial cable and ground plane was
modeled as a real voltage generator [21] with a series lumped re-
sistor , which is equal to the cable resistance. The
grid was terminated by six-cell perfectly matched layer (PML)
absorbing boundary conditions. The time waveform of the
voltagegeneratorwasaderivatedGaussianpulsewithbandwidth
(1.7 GHz, 10 GHz), which is large enough to include the first an-
tenna resonances for standard operations (2.4 GHz to 3.4 GHz).



1326 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 7, JULY 2001

Fig. 7. Current impulse responseh�t (�t = 0:78 ps) of a stacked patch
antenna (a = 41 mm, b = 33:2 mm, d = 20:9 mm, d = 5 mm, l =

1:57mm,h = 5:4mm," = 2:2," = 1) at the coax/ground plane transition.

Fig. 8. FDTD-computed current (continuous line) at the coax/ground-plane
transition for the antenna in Fig. 7 and the convolution (dashed line) of the test
signal with the impulse response deconvolved by the present method.

This structure can be considered as a one-port device. The output
observable is the current at the source point. The current
is evaluated as magnetic field line integral around the excitation
point. The impulse response is defined as the inverse Fourier
transform of the input admittance

(14)

where and .
To lower the high-frequency numerical noise on the FDTD

solution, was low-pass filtered (15-GHz cutoff frequency)
before the numerical computation of the second and fourth
derivatives of in (8). The impulse response, computed
by deconvolution, is shown in Fig. 7. The convolution

was computed and compared with (Fig. 8)
for accuracy evaluation. Full agreement can be observed and
the rms error is less than 7%. For completeness, the
Fourier transforms of the time signals of Fig. 8 are shown in

Fig. 9. Fourier transforms of the currents of Fig. 8.

Fig. 10. Planar low-pass filter (size in millimeters) and impulse responses
h �t (dashed line) andh �t (continuous line) versus time by the FDTD/ME
method (�t = 0:2 ps).

Fig. 9. A good agreement can be appreciated up to 6 GHz,
while the low-pass effect of the proposed ME-deconvolution is
responsible for the worsening at higher frequencies.

B. Microstrip Filter

A planar low-pass filter [22] on a 0.794-mm substrate
(Fig. 10) with 2.2 permittivity, was meshed on a nonuniform
grid with cell sizes 0.3 mm mm and 0.1 mm

mm and time step ps. The com-
putation domain was truncated by six-cell PML absorbing
boundary conditions. The source was modeled as a Huygens-in-
jector template [6] exciting a -directed quasi-TEM mode
[Gaussian-pulse bandwidth (0, 27 GHz)]. The structure is a
two-port symmetric device. The input waveform is the voltage

computed as the line integral of the incident electric field
at port from the ground plane to the microstrip. The output
signals are the amplitudes and of the outgoing
modes from ports and , respectively, defined as line
integrals in the same way. Therefore, the impulse responses are
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(a)

(b)

Fig. 11. FDTD-computed outgoing voltages (continuous lines) at: (a) port
P and (b)P and the corresponding convolution (dashed lines) of the input
Gaussian pulse and the numerical impulse responsesh andh .

Fig. 12. Frequency-domain scattering parametersS andS computed as
ratio of transforms (continuous lines) and as Fourier transform (dashed lines) of
the impulse responses retrieved by the FDTD–ME method.

the reflection coefficients and the transmission
coefficients defined as

(15a)

(15b)

A time-domain device macromodel can, therefore, be
obtained from data computed via a single FDTD run.

Low-pass filtering (20-GHz cutoff frequency) is applied to
the output signals before evaluation of derivatives. The com-
puted impulse responses by deconvolution are shown in
Fig. 10. The convolutions and of the impulse re-
sponses and the input voltage are plotted in Fig. 11 for compar-
ison with and , respectively. The diagrams are in-
distinguishable almost everywhere and both the rms errors were
less than 4%. It is useful to show the scattering parameters in
the frequency domain ( Fig. 12) as the direct Fourier transform

of the FDTD–ME computed impulse responses and as the ra-
tios between the spectra of the reflected voltages
and the input voltage . The low-pass filter performance
can be seen in the sharp rolloff beginning approximately at
5 GHz, as predicted in [22]. An excellent agreement for both
and parameters can be appreciated at frequencies within the
filter bandwidth.

VI. CONCLUSION

In order to achieve a time-domain macromodel of a mi-
crowave device, the impulse response computation by FDTD
data processing has been considered in this paper. With ref-
erence to Gaussian and derivated-Gaussian input waveforms,
a simple time-domain deconvolution algorithm has been
proposed. The deconvolution is based on a truncated ME of the
input waveform spectrum. The accuracy of the method has been
shown to depend on both the truncation order and the input
bandwidth. A numerical analysis has been carried out to show
that accurate deconvolutions (preserving the accuracy of the
FDTD response) can be obtained by means of a fourth-order
ME if the input upper frequency is from 1 to 1.5 the response
upper frequency. The proposed method was shown to be more
accurate and of an order of magnitude computationally more
efficient than the FFT-based deconvolution.
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